Lava Flows
The root zone of volcanoes is found some 70 to 200 km (40 to 120 miles) below the surface of the Earth. There, in the Earth’s upper mantle, temperatures are high enough to melt rock and form magma. At these depths, magma is generally less dense than the solid rocks surrounding and overlying it, and so it rises toward the surface by the buoyant force of gravity. In some cases, as in the undersea zones where the tectonic plates of the Earth’s crust are separating, magma may move directly up to the surface through fissures that reach as deep as the mantle. In other cases, it collects in large underground reservoirs known as magma chambers before erupting to the surface. Molten rock that reaches the surface is called lava.
Most magma formed by partial melting of the mantle is basaltic in composition, but, as it ascends, it assimilates silica, sodium, and potassium from the surrounding host rocks. Volcanic rocks found where magma erupts to the surface are classified into four major types, or “clans”—basalt, andesite, dacite, and rhyolite.
If the vast, unseen undersea lava flows of the oceanic ridge system are considered, lava flows are the most common products of the Earth’s volcanoes. There are two major types of lava flow, referred to around the world by their Hawaiian names: pahoehoe, a more fluid flow with a smooth to ropy surface; and aa (or a’a), a more viscous flow whose surface is covered by thick, jumbled piles of loose, sharp blocks. Both types have the same chemical composition; the difference seems to be in the eruptive temperature and the speed of movement of the flow. As much as 99 percent of the island of Hawaii is composed of aa and pahoehoe flows. Indeed, Kilauea volcano has erupted continuously since 1983, its lava flows covering more than 100 square km (40 square miles) of land and adding more than 2 square km (0.8 square mile) to the island where the lava has poured into the ocean. In the Mediterranean region, Mount Etna has issued lava more than 150 times since its first recorded activity in 1500 bc.
Explosions
Massive volcanic explosions are caused by the rapid expansion of gases, which in turn can be triggered by the sudden depressurization of a shallow hydrothermal system or gas-charged magma body or by the rapid mixing of magma with groundwater. The ash, cinders, hot fragments, and bombs thrown out in these explosions are the major products observed in volcanic eruptions around the world.
These solid products are classified by size. Volcanic dust is the finest, usually about the consistency of flour.
Volcanic ash is also fine but more gritty, with particles up to the size of grains of rice.
Cinders, sometimes called scoriae, are the next in size; these coarse fragments can range from 2 mm (0.08 inch) up to about 64 mm (2.5 inches). Fragments larger than 64 mm are called either
blocks or
bombs. Volcanic blocks are usually older rock broken by the explosive opening of a new vent. Large blocks ejected in such explosions have been hurled as far as 20 km (12 miles) from the vent. Volcanic bombs, in contrast, are generally incandescent and soft during their flight. Some bombs take on strange, twisted shapes as they spin through the air. Others have a cracked and separated crust that has cooled and hardened in flight; they are called “breadcrust bombs.”
A directed blast in which one side of a
volcanic cone fails, as happened at
Mount St. Helens in the
United States in 1980, can cause destruction over several hundred square kilometres on the failed flank of the volcano. This is especially true if the blast cloud is heavily laden with fragmental debris and becomes dense and fluidized. It then takes on characteristics similar to a
pyroclastic flow.
Ash falls
Ash falls from continued explosive jetting of fine volcanic particles into high ash clouds generally do not cause any direct fatalities. However, where the ash accumulates more than a few centimetres, collapsing roofs and failure of
crops are major secondary hazards. Crop failure can occur over large areas downwind from major ash eruptions, and widespread famine and disease may result, especially in poorly developed countries. In the long run, however, the decomposition of nutrient-rich volcanic fallout is responsible for some of the world’s best soils.
Hot springs and
geysers
Hot springs and
geysers also are manifestations of volcanic activity. They result from the interaction of
groundwater with
magma or with solidified but still-hot
igneous rocks at shallow depths.
Yellowstone National Park in the United States is one of the most famous areas of hot springs and geysers in the world. The total heat flux from these thermal features is estimated to be 300 megawatts (300 million
watts). The last great eruption at Yellowstone occurred about 630,000 years ago when some 1,000 cubic km (240 cubic miles) of
rhyolitic pumice and ash were ejected in huge pyroclastic flows and resulted in the formation of a caldera—a large circular or oval depression caused by collapse of the surface following magma removal—approximately 45 by 75 km (28 by 47 miles) in size. Yellowstone Lake now occupies part of this giant caldera. Since that last great outburst, about 1,200 cubic km (288 cubic miles) of rhyolite lava flows and domes have erupted in numerous smaller events. The cooling roots of such past eruptions, or possibly the new intrusions of magma at shallow depth, are the heat sources for the Yellowstone hot springs and geysers.
Geysers are hot springs that intermittently spout a column of hot water and
steam into the air. This action is caused by the water in deep conduits beneath a
geyser approaching or reaching the boiling point. At 300 metres (about 1,000 feet) below the surface, the boiling point of water increases to approximately 230 °C (450 °F) because of the increased pressure of the overlying water. As bubbles of steam or dissolved gas begin to form, rise, and expand, hot water spills from the geyser’s vent, lowering the pressure on the water column below. Water at depth then momentarily exceeds its boiling point and flashes into steam, forcing additional water from the vent. This chain reaction continues until the geyser exhausts its supply of boiling water.
After a geyser stops spouting, the conduits at depth refill with groundwater, and reheating begins again. In geysers such as Yellowstone’s
Old Faithful, the spouting and recharge period is quite regular. This famous geyser has gushed to heights of 30 to 55 metres (100 to 180 feet) about every 90 minutes for more than 100 years. If Old Faithful’s eruption lasts only a minute or two, the next interval will be shorter than average, while a four-minute eruption will be followed by a longer interval. Other geysers have much more erratic recharge times.